A Better Gamepad Keyboard: Part 1, A Survey of Extant Gamepad Keyboards

(This article is also available as a devblog on Gamasutra.)

Slashcards: Learn Japanese! Gameplay

Slashcards is a game about learning language. And part of rehearsing new language knowledge is responding with English equivalents of pronunciation. The most thorough way of testing players is for them to input that pronunciation letter by letter. So, one interface challenge I embraced for Slashcards’ design was to make a game-friendly gamepad-compatible onscreen keyboard.

Part 1: A survey of extant gamepad typing interfaces.

In an effort to avoid re-inventing the wheel — and falling into old ruts — I did some research on to typing on consoles. Perhaps the most naive approach of all was to make a matrix of buttons where each button corresponded to a key on the keyboard. The user would then navigate through the matrix like any kind of on-screen GUI, going from GUI element to GUI element by pressing the d-pad or left stick in the corresponding direction. This has remained ubiquitous ever since 8-bit consoles. Here’s The Legend of Zelda (NES, 1986):

The Legend of Zelda

…and here’s the Xbox 360, 20 years layer: (around its launch, ~2006)

XBox 360 ABC Keyboard

The Xbox 360 keyboard originally defaulted to an ABC layout. I guess ABC-order is defensible insofar as we all know the alphabet, so, given a letter, we would intuit the neighboring left and right letters. But what about the letters above and below? It’s frustrating that, for example, P is to the left of L. Moreover using the wrap-around topology of the keyboard — pressing left on the left edge to go to the right edge, and vice versa — would similarly be a convenience only available to those who carefully studied this unnatural layout.

Eventually — perhaps from release, I don’t recall — you could change the layout of the Xbox 360 on-screen keyboard to a QWERTY layout, and leverage the familiarity every modern person has from thousands of hours of typing. Now you could hunt-and-peck like you were typing on your laptop as you would while you ate cereal or nudged some stir-frying onions with the other hand. I believe this is now the default layout on the Xbox One.

Xbox Keyboard QWERTY

Sony has offered a bizarre multi-step interface, whereby users hunt-and-peck a letter family on the left. Then a number of options including auto-complete suggestions are presented on the right. Finally a user selects one of those options by again navigating across them. The result is a mixed bag. Letters that were far from each other in the above keyboards are closer in terms of button press-count, but previously-adjacent letters might be five or six button-presses in the PSP system. Maybe this compromise plus the autocomplete suggestions turns out to give more words per minute — I remember my time typing on the PSP as an exercise in frustration where I had to relearn the system every time I encountered it. Either way, the bottom line is that any design that relies on autocomplete suggestions is not going to be appropriate for Slashcards.

PSP keyboard

Fortunately for PSP fans (and the PSP’s successor, the Vita) eventually the PSP also offerred a full keyboard layout (known as the “fullscreen keyboard” on the PSP.

A far better performing option is the approach taken by the Wii and the PS4 on-screen keyboards. They offer a QWERTY keyboard whereby the player can more or less point to a key to select it. (The PS4 requires players to tilt, not exactly point, but the result feels responsive and intuitive.)

PS4 accelerometer keyboard

Steam Big Picture mode has an interesting hierarchical keyboard. The user presses a direction with the left stick and selects one of the four action buttons to select a character.

Steam Big Picture Keyboard

The more you use this keyboard, the faster you’ll type — and the skill ceiling is far higher than the hunt-and-peck keyboards above. It also has the virtue of being alphabetical but without the compromise of arbitrary rows that computer-keyboard-lookalike layouts have. At every letter you can easily see if your next layer is 1) in the current button group, 2) counter-clockwise (previous to the current letter) or 3) clockwise (after the current letter.) This is the first system that really tempted me towards implementation in Slashcards. I struggled mightily to compress it to a size that wouldn’t be so demanding of screen real estate. I couldn’t come up with a workable solution but you’ll see that it has something in common with the Japanese input solution I devised.

My first thought was to take the extant QWERTY hunt-and-peck keyboard that we see on the Xbox/PS and add another cursor. Players could hunt-and-peck with the left stick and right stick. This seemed obvious enough that I wondered if this had been attempted before — sure enough, a Google search hit showed me that the approach is explored to some extent in a Microsoft research paper.

Their research finds study participants went from 5.8 words per minute on the single-stick hunt-and-peck QWERTY keyboard to 6.4 words per minute with a dual-stick split hunt-and-peck QWERTY keyboard. A 10% gain is still far from the kind of quantum leap I’m looking for.

In the end, I found that none of these options would work to type in even a few letters in a real-time action game situation. Slashcards demands better!–or rather, a more precisely-designed solution.

In the next part, I’ll show how I mixed and matched the best of the above approaches to iterate towards a functional, consistent, and radically more efficient on-screen gamepad keyboard.

Leave a Reply

Your email address will not be published. Required fields are marked *